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Abstract—Modern scienti ¢ datasets present numerous data
management and analysis challenges. State-of-the-art ied and
query technologies such as FastBit can signi cantly improe ac-
cesses to these datasets by augmenting the user data with éxes
and other secondary information. However, a challenge is tht the
indexes assume the relational data model but the scienti c ata
generally follows the array data model. To match the two data
models, we design a generic mapping mechanism and implement
an ef cient input and output interface for reading and writi ng
the data and their corresponding indexes. To take advantagef
the emerging many-core architectures, we also develop a paltel Fig. 1. . Visua_lization of a global climate simulation with fiple storms.
strategy for indexing using threading technology. This appoach The regions with storms cover only a small portion of the glob
complements our on-going MPI-based parallelization effats.

We demonstrate the exibility of our software by applying it

to two of the most commonly used scienti ¢ data formats, HDF5 ; ; ; ;
and NetCDF. We present two case studies using data from a An essential challenge in this work is how to map the data

particle accelerator model and a global climate model. We ap Model assumed by the index structures to the data model used

conducted a detailed performance study using these scienti iNn scientic data sets. More specically, the indexing data

datasets. The results show that FastQuery speeds up the qyer structures assume a relational data model [18], while Saen

time by a factor of 2.5x to 50x, and it reduces the indexing tire  data formats such as NetCDF [26] and HDF5 [25] typically use

by a factor of 16 on 24 cores. the array data model. The second challenge that we address
|. INTRODUCTION is how to ef ciently work with massive datasets. The main

Modern scienti ¢ applications produce and consume Vagpntrlbutlons of the paper are as follows:
amounts of data [11], [23]. In many cases, the essential
information is contained in a relatively small number ofalat
records. For example, the Intergovernmental Panel on @ima
Change's (IPCC) is in the process of generating tens of
petabytes 10'° bytes) for its fth assessment report (AR5)
but critical information related to important events such a
hurricanes might occupy no more than a few gigabyf (
bytes), an example of which is shown in Figure 1. The ability
to directly access the necessary information instead afgyoi
through all data records can signi cantly accelerate asedy
This requirement for ef ciently locating the interestingita
records is indispensable to many data analysis procedures.

The best-known technology for locating selected data
records from a large dataset is the database indexing [23,
Ch. 6]. Typically, the database indexing techniques ard-ava
able through large centralized database management sy/stem
(DBMS), however, scientists are often unwilling or unable
to place the datasets under the control of DBMS [15]. For

example, IPCC has settled on storing all AR5 data in the i i
NetCDF [26] le format. Instead of requiring the users to The rest of the paper is structured as follows. We review

place their data into DBMS, we propose to build indexes alo@e related work on scienti ¢ data formats and indexing is in

with the existing data to accelerate the search operatitfes. ﬁctlon Il. we de_scrlbe :che design of ITast_Quer)f/ '2 Sectipn ”_
implement this functionality in a system named FastQuery.S ow an extensn{e performance eva uqtlon of astQuery in
Section 1V, and discuss two use cases in Section V. We con-

IMore information available afttp://www.ipcc.ch/ . clude with some thoughts for future directions in Section VI

We de ne a mapping between the relational model fol-
lowed by the indexing software and the array model used
by most scienti ¢ applications.

We de ne a simple abstraction layer between FastQuery
and the scienti ¢ format le libraries, so that our system
can be applicable to common scientic data formats
quickly and ef ciently.

We deploy a simple yet exible naming scheme for users
to specify datasets in an arbitrary arrays and subarrays in
a scienti ¢ dataset.

We implemented threading capability in FastQuery to
take advantage of many-core architecture for processing
large datasets.

We extensively evaluate the performance of our new
indexing software using realistic scienti ¢ dataset, and
demonstrate the usability of our system through two
application case studies.
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techniques to scienti ¢ data. In this section, we brie y iew
related work on scienti ¢ data formats and database indgxin
and point out the distinct features of our current work.

Il. RELATED WORK

A. Scienti c Data Formats
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The database management systems generally follow the
relation data model [18] that treats user data as tables with
rows and columns. A typical scienti c application views itsrig. 2. The logical view of a sample bitmap index shown as tesgiumns
data as arrays, often each physical quantity such as tetaperacn the right.
and pressure is stored in its own array. In these cases, the
columns in the relational data model can be easily mappedt@represent an index may scale quadratically with the numbe
variables in scienti ¢ applications. However, in many case©f rows. In such a case, an index fo€® rows may require
an array may contain many physica| quantities_ This WOUH):LS bits. Such an index is much Iarger than the raw data size
make it necessary for us to work with subarrays. Earlier wodd is not acceptable except for the smallest datasets.
on indexing scientic data have only considered indexing A number of different strategies have been proposed to
whole arrays [9], we believe that we are the rst ones tﬁeduce the bitmap index sizes and improve their overall ef-
consider indexing subarrays. We will describe how to adgrefgctiveness. Common methods include compressing indavidu
the mappmg of rows and tables in the next section. bitmaps, encode the bitmaps in different ways, and binning

Since scienti ¢ applications store their data as arrays, the original data [23, Ch. 6]. FastBit [28] is an open-source
commonly used scienti ¢ data formats are designed to stoseftware package that implements many of these methods. In
arrays ef ciently. We use two of the most popular formatghis work, we choose to use FastBit as a representative of
NetCDF [26] and HDF5 [25], to demonstrate the exibility ofgeneral indexing methods. FastBit has been shown to perform
FastQuery design. Both NetCDF and HDF5 are designedWg!l in @ number of different scientic applications [28].
be portable and self-describing. With appropriate datassc [N addition, there are also a series of theoretic computatio
libraries, they can be transported across machines. complexity studies to further establish its soundness, [29].

B. Indexing for Scienti c Data Formats D. Distributed Indexing

Most of the research work on indexing and searching The bene ts of performing data analyses in parallel have
techniques are designed for commercial database applisati been recognized since the dawn of parallel computing [10],
However with the recent explosion of scientic datasetdl9]. Unlike many other high-performance computing appli-
researchers are extending indexing techniques for sdemqti ~ cations, database operations are dominated by data ascesse
plications as well [23]. Traditional indexing techniquesls as rather than computations performed by the CPUs. Optimal I/O
B-tree are designed primarily to accelerate access toithgiv  performance is, hence, the most critical considerationnwhe
data records, such as looking for a customer's bank recgrd [designing parallel database systems. A number of parallel
In contrast, a query on scienti ¢ data typically returns alja database vendors have opted for custom hardware to achieve
large number of records, for example, a search for accelrathis objective. For example, Netezza uses an active storage
particles in a Laser Wake eld particle accelerator migtsule approach where the disk controllers are modi ed to carry out
in thousands of data records corresponding to thousandsceftain database operations [5]. Teradata employs a $gedia
particles. Furthermore, scienti ¢ datasets are often poed or interconnect, called BYNET, to increase the bandwidth agnon
collected in bulk, and are never modi ed. A class of indexingata access modules [2], [7]. Alternatively, a number of
methods that can take full advantage of these characosristiesearchers proposed to store the data in main memory [6],

is called the bitmap index. [14]. Such hardware-based solutions are typically notlalsbg
_ _ ) to scienti c users, or are unable to handle a large volume of
C. Bitmap Indexing Technology and FastBit data. To maximize the impact of our indexing system, we use

A bitmap index logically contains the same information aa purely software-based approach with threading to take ful
a B-tree index. A B-tree consists of a set of pairs of kegdvantage of commodity hardware.
value and row identi ers; however a bitmap index replaces th  Among the approaches that use commodity hardware, the
row identi ers associated with each key value with a bitmagshared-nothing” approach has been demonstrated to be the
Because the bitmaps can be operated ef ciently, this in@ex cmost effective for data management applications [24]. Our
answer queries ef ciently as demonstrated rst by O'NeiV[1 work follows this strategy by partitioning an array provide

The basic bitmap index uses one bitmap for each distirzy the user into a number of disjoint sub-arrays. We build and
key value as illustrated in Figure 2. For scienti ¢ data wheruse the index for each sub-array independently. This approa
the number of distinct values can be as large as the numberohimizes the coordination required among the paralldisas
rows (i.e., every value is distinct). The number of bits iieggh  Since tasks can read (and process) data in parallel, the-unde



lying le system has an opportunity to maximize data access
throughput using this approach.

Many of the parallel and distributed indexing techniques ar
derived from the B-Tree [1]. These parallel trees suppoly on
limited amounts of concurrency in both index constructiod a
use, and have been shown to not perform as well as bitmap
indexes. In general, we see bitmap indexes as more apppria
for scienti c data and have implemented our parallel indexi
system based on the sequential software FastBit [28].

In this work, we explore thread parallelism for the emerging
many-core architecture. This threading approach compiésne
the on-going effort of MPI-based parallel approach [3]ukss
such as how threading is affected by the 1/0 system and how
to integrate thread parallelism with MPI parallelism arebt®o
explored in the future.

I11. FASTQUERY

Our design goal for FastQuery was to perform searching
operations on scienti ¢ data ef ciently with database indey
technologies. To achieve this, we need to address two chal-
lenges: (1) mapping the array data model used by common
scienti ¢ data format libraries to the relational data mbde
assumed by the indexing data structure, and (2) paralleliz-
ing indexing functions to take full advantage of many-cor
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architectures. ﬁ1e remainder of this section, we give an overview of the

We map the arrays into the relational data model using tﬁ@stQuery design and then describe each of these four issues

following three assumptions: (1) each array element is regpp'” ™
to a row in a relational table, (Il) elements of a multidi-p System Design
mensional array are linearized following C/C++ convention

that is the rst dimension is the slowest varying dimension FastQuery consists of a few key components as shown

Figure 3. The main purpose and responsibility of each

while the last dimension is the fastest varying dimensiof!!
and (Ill) an arbitrary number of arrays or subarrays can
placed into a relational table as long as they have the same
number of elements. A key piece of information most indexing
data structures rely on the relational data model is the the
row identi ers. Assumption (II) de nes a row identi er from
any array, and assumption (lll) allows us to use the row
identi ers de ned for different arrays to refer to the same
rows. In many simulations, the physical quantities such as

ig@mMponent is brie y described below:

FastQuery API de nes the main functions for indexing

and querying. The two set of functions are implemented
in two C++ classes named IndexBuilder and QueryPro-
Cessor.

Parser de nes the naming scheme for variables and
syntax for query expressions. The naming scheme will
be explained later in this section. In the current imple-

temperature and pressure computed are stored in separate Mmentation, a query consists of a list of range conditions

arrays, an element in one of these arrays refer to values
associated with a point in space or a cell in space. In such
a case, it is natural to select the pressure values in regions
of space where temperate is greater than 1000. Under the
above assumptions, this selection operation can be exgtess
as a SQL statement as follows “SELECT pressure FROM
simulation-data WHERE temperature 1000. In general,
our approach de nes a mechanism for expressing SQL-style
selections on arrays. It is up to users to ensure that thetegle
is actually meaningful.

To produce a concrete design for a software package,
FastQuery addresses the following speci ¢ issues: (1) tow t
handle variables organized in arbitrary le layout, (2) how

on arithmetic operations such as “/timel/x[1,>]10*2

&& Mime2/x[1, :]> 7+5".

FastBit provides the indexing and querying functions used
in FastQuery. More information about FastBit can be
found in Section II-C.

Array /O interface de nes a uni ed interface for the un-
derline array-based le formats. At this time, FastQuery
can support NetCDF and HDF5 les.

Variable table represents the relational data model used by
FastQuery and other indexing and query technology [28],
[4]. The array data read from le is interpreted and
temporarily stored in tables dynamically created for each
query or index operation.

to support array-based specication and interface, (3) how Figure 4 (a) and (b) further illustrate the process of indgxi
to parallelize the indexing operations, and (4) how to wor&nd querying in FastQuery. Upon receiving the buildinddk ca
with different array-based data formats in a uni ed way. Ifrom users, FastQuery rst parses the variable name spéci e
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data variable. In FastQuery API, “A[4, :]" refers to the datathe last row
of the dataset, “A[0:2, 1:4]" refers to the continuous sudarregion at the
top-left corner, and “A[0:3:2, 5:10:2]" refers to the skip subarrary region
at the top-right. FastQuery considers these user specreys as individual
variables. Thus, FastQuery can process a query like “A[0:2] > 0 &&

A[0:3:2, 5:10:2]> 0". The query will result in 1 hit as circled in the gure,

gvarNaIme;varPat_h nr)T" whict:)wtiLl match t(l)\l varia?lefrshwhcf)se pé\th tsatis €Sand the resulting coordinate of the selected element willopel], which is
o regular expression” nvarPath n nvarName ". Therefore, FastQUery o rejative coordinate position in the two user speci ethgs.

can answer a user-friendly query such as “temperatur® without asking
for additional path information, because there is only oagable in the le

that matches our regular expression. identify the variable hteshspacetesthitemperature”. There-
fore, the FastQuery interface improves the exibility and

by the user to identify the corresponding dataset and arrayability of the query system without exposing unnecessary

range. Then FastQuery creates a variable table that peovidetails to users.

the relational table view needed by the underlying indexing

building software FastBit. Finally, the bitmap indexes ar€. Array model and Subarray speci cation

storgd. as arrays In a user speci eF’ location. _ Scienti c data is commonly represented and stored in the
Similarly, during query processing, FastQuery starts Wiy of 4 set of multi-dimensional arrays because scientist

parsing the user query string to determine the query c@miiti oy 1o generate and manipulate data in the array model.
and variables. Then, a variable table is created from vi@sabyonce, a key objective of FastQuery is to present a array mode
involved in the query, and the indexes of the variables afgertace for users to manipulate and query their data, &b th

loaded from le into the table. Finally, FastQuery uses Bést FasiQuery can more seamlessly connect with the scientic

to resolve the query and return the number of hits or coordipyjications and use cases. For example, instead of storing

nates of the selected data from query. each variable in a separate dataset, scientists normaity ju
dump their data to a single 2-dimensional dataset where each
column represents one variable. As a result, users cannot

As shown in Figure 5, scienti ¢ formats commonly storeaccess the values of a particular variable without spewifyi
data in a hierarchical layout. This layout provides usees tlan array region of the dataset. Furthermore, some scientic
exibility to organize data in the most convenient way foeth applications might only be interested in one particulaiaeg
applications. However, it also introduces additional cterity of the data. For instance, climate data is commonly stored
and dif culty when the data has to be used by differenin a 2-dimensional dataset, and data points are placed in the
applications. To overcome the issue, one approach that llasaset according to their latitude and longitude geodcaph
been adapted in several scientic data analysis tools is positions. But for detecting atmospheric rivers [16], [21]
enforce an internal le layout, such as H5hut [13]. While Bucscientists are only interested in the water vapor valuesén t
approach could simplify the issue, it limits the usabiliiyeo area of tropical regions, which corresponds to a particular
le, and the restricted layout may not be applicable to aél thdata array region in the dataset. Thus, the scientist would
science datasets or future applications. In contrast, weyde like the query system be able answer a query of the form
FastQuery to work with arbitrary le layout. “vapor[:, 452:600]> threshold”. Otherwise, users would have

Our basic approach is to require a full-path for each vagiabto send queries like “vapor threshold”, then lIter out the
Any path that refer to a unique variable can be used, anesulting data by the associated coordinates. As shown by ou
every variable can be identied by any of its paths. Foexperimental evaluations in Section IV-B, without the soipp
instance, in the le layout shown in Figure 5, for a full-pathof array speci cation (i.e. such as using HDF5-FastQuety, [9
“nexmtimelInz”, FastQuery identi es an unique variable in thethe post-processing overhead could easily dominate thalbve
le, and the variable can also be referred by its alternatid paguery response time and limits the performance benet from
“nexpntime2nz”. using an indexing/query system.

FastQuery also provides a regular expression like namingThe approach of FastQuery is to allow users explicitly
scheme to simplify speci cation of variable names. In parti specify data with an array description through the FastQuer
lar, the current implementation lets users specify vaeisbly a API. Speci cally, FastQuery uses the array speci cation,
naming tupleglvarName; varP ath ). Then FastQuery then in- var[start : end : stride], which is similar to the syntax
ternally parses and matches a naming tuple to variablesavhosed by Fortran and other programming languages used by
full-path satisfying the regular expression “nvarP athn scientists. As shown by the examples in Figure 6, users can
nvarName”. For instance, in the le shown in Figure 5, usinguse “A[4, :]”, “A[0:2, 1:4]" or “AJ0:3:2, 5:10:2]" to refer
the varName “temperature” is sufcient for FastQuery toto different regions of a two-dimensional variable, or they
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Fig. 5. An example of scienti ¢ data format le layout. In R&3uery, vari-
ables are identi ed by their full-paths. So, variable withtp “nexmtimeln
z" can also be recognized by FastQuery with pathexmtimenz”.
But FastQuery allows users to specify variable with a namingle

B. Variable naming scheme



TABLE |
ELAPSED TIME FOR PROCESSING QUERY WITH A SINGLE CORE

E. Unied array-based I/O interface

dataset query Various array-based data le formats, such as NetCDF and

1% selectivity | 10% selectivity | 50% selectivity HDF5, are widely used by the scienti c community. Sciergist
(speed-up) (speed-up) (speed-up) often store their data in the format that best ts to the needs

Sm?g')'gg)tasa ( 414-.42335)() (g:ggi) (419-518% of their applications. Although the functionality and dgsiof

medium dataset 6.385 46105 50005 these le formats are similar, the raw data can can only be
(45GB) (52.2x) (7.23x) (1.67x) accessed by their respective APIs. As the size of a scientic
'ar(ggeogag)aset (ié-éﬁ) (%0-576% 80255)3 datasets increase, it could be costly or even infeasible to

' ' ' convert datasets between different le formats. Hence, we d

TABLE Il not want to limit our system to a speci c le format.

In order to make FastQuery applicable to any scienti ¢ data
le format, we de ne a unied /O interface for FastQuery

ELAPSED TIME FOR BUILDING INDEX WITH A SINGLE CORE

| dataset | read data] build index | write index [  total | . ith th Vi le f i .
Sl dataset e 51135 o2e Tomine to interact with the underylng_ e format |t_3ra_1r|es. Hence
(9GB) (3.2%) (86.3%) (2.5%) once the interface for the specic le format is implemented
medium datase] 274s 10,751s 206s 3hours FastQuery is able to perform indexing and querying funation
(45GB) (2.4%) (95.7%) (1.8%) on the les conforming to the format. To demonstrate the
large dataset | 405s 21,683s 422s 6hours applicability of our I/O interface, we have implemented the
(90GB) (1.8%) (96.3%) (1.9%)

interface for the two most common scienti ¢ data formats,
HDF5 and NetCDF.

could simply use the variable name, “A”, to refer the whole As shown in Figure 3, the main /O operations from
dataset. In fact, the array speci cation de ned in FastQusr FastQuery are reading/writing index and data. According to
relatively exible because the speci cation is recogniZeyla the data access pattern of FastQuery, our interface inglude
language syntax implemented in the FastQuery parser. Orceset of functions that perform 1/0 on the whole region
the array speci cation is recognized, FastQuery integnate- of a dataset, a subarray region of a dataset, or a list of
ates a temporary variable in the variable table. The temmporaoordinates of a dataset. Most of our interface functions ca
variable only corresponds to the data from the speci edyarrde directly mapped to the 1/O functions provided by the
region, so that FastQuery can perform all its functions @n titHDF5 and NetCDF le libraries. We note that NetCDF cannot
array, just like a regular variable from le. retrieve data by coordinates, thus results have to be read
from le one-by-one in special case. Overall, the undenrlyin
le format libraries do have a signi cant impact on the I/O

rformance of FastQuery. But, we do expect to leverage

. . e
It has been demonstrated that indexing can accelerate ({;’a{ﬁous performance improvement efforts currently undsrw
query in earlier research work [17], [28]. From the summany,, maior library developers.

of our experiments in Table |, we also found that using indexe
could achieve a signi cant speed-up over a factor of 50. Even V. EXPERIMENTS

in the worst case, when 50% of data is selected by a queryjn this section, we extensively evaluate the performance
we still observed a Speed-up factor around 1.5. HOWeVer, O@ﬁFastQuery by using a real scientic dataset and a 24-
shortcoming of using an index is that we have to build thesre compute node from the NERSC Cray XE6 Hopper II
index in advance, and this pre-processing step can be a tigiercomputer [12]. We describe our experimental testbed
consuming process for large datasets. As shown in TableH, Section IV-A. Then we present the query and indexing
the time of bquIng index can increase |ineal’|y with theeSinerformance in Section IV-B and Section |V_C’ respectiye|y

of the data, and it can take more than 6 hours for a datapgf the results reported in our evaluation correspond to the
of size 90GB. Therefore, it is critical to minimize the timemedian value over at least 5 experimental runs.

for building indexes, and prevent this step from becoming a
bottleneck in our index/query system. A. Testbed

In this paper, we attempt to reduce the index building time We evaluate FastQuery by processing queries on a real
by exploring the parallel processing power offered by thecienti ¢ dataset collected from a large-scale, high resoh
modern many-core processors. Our approach is to implemehysics simulation generated by the IMPACT-T [20] code. The
the FastQuery system using multi-threaded programming, @aginal dataset is over 50TB and consists of 720 time steps.
that the index of each variable in a dataset can be buiach time step has 9 variables, and each variable has Inbillio
independently on a single core of a compute node in a paralletords/particles. For our evaluation, we use three differ
fashion. In our experiments, we will demonstrate that owubsets of the original dataset. Each subset has 120 tipps ste
approach reduces the time to build indexes by a factor of 46d each time step has one variable. We adjust the size of the
when using 24 cores. Furthermore, we analyze the parakeibset by choosing different number of particles per végiab
ef ciency with respect to I/O and CPU to show the potentialhe “Large” dataset has 100 million particles per variable,
issues and bottlenecks of our parallel approach. the “Medium” dataset has 50 million particles per variable,

D. Parallel indexing



and the “Small” dataset has 10 million particles per vagabldataset. On the other hand, the selectivity represents the
Accordingly, the total size of the three datasets are 90Gpegrcentage of elements would be selected from the query arra
45GB and 9GB. To perform query on the datasets, indexes aggion. Let us consider a one-dimensional variable with 100
built for each of the datasets using the FastBit binningaopti elements, and the values of its elements as being uniformly
“precision=3" [23]. The built indexes are stored in le septe distributed between 0 and 1. An example of query with 100%
from the data, and the size of each index le is roughly theoverage and 50% selectivity would tar[0 : 100]< 0:5 (or
same as the size of its data le. For these experiments, almply var < 0:5). This is because the query is applied
the data is stored in the HDF5 le format, but we expect tto the whole array region of the variable, and 50% of the
obtain similar performance on NetCDF les because the tateslements from the query region is expected to be selected
NetCDF-4 implementation uses HDF5 as its storage layer. due to the uniform data value distribution. Similarly, a gue
The experiments was ran on a single compute node frorar[0 : 50] < 0:5 has 50% coverage and 50% selectivity
NERSC Cray XE6 supercomputing system Hopper Il [12because it queries on an array region with the size of 50%
A hopper compute node has 2 twelve-core AMD 'Magnyef the total number of data elements, and only 50% of the
Cours'2.1 GHz processors, and each processor consists agfl@ments from the array region would be selected. Hence, by
NUMA nodes with 6 cores each. Hence, each compute noalucing the coverage or the selectivity of a query couldh bot
has a total of 24 cores and 32GB memory. Each core hasult in fewer number of selected elements.
its own L1 and L2 cache, but a 6MB L3 cache is shared by 2) Performance comparison:n the experiments, each
the 6 cores from a NUMA node. Under our multi-threadeduery is iteratively processed on each of the 120 time steps,
execution environment, threads are placed next to the @oresnd the total elapsed time is shown in Figure 7. The selégtivi
the order of NUMA node. In other words, the rst 6 thread®f queries is varied from 0% to 100% in steps of 1%, and the
runs on the six cores of the rst NUMA node, then the next 6overage is varied from 25% to 100% in steps of 25%. As
threads runs on the second NUMA node, and so on. Althoughown from the gure, Scan always scans through all data
the placement of threads could affect performance, we wiMalues for any query regardless its selectivity and cowerag
not explore this issue further in the present work. Therefore, its response time is a constant, and plotted as a
Hopper uses Lustre as its le system. The current Lustiime in the gures.
hardware consists of 156 OSTs (Object Storage Target). OufFor FastQuery, under a xed query coverage, its response
datasets are stored on the le system with the default stipe time changes along with the selectivity. This behavior has
of 1MB and stripe count of 13. According to a system pro ldeen observed and explained in the previously study in the
report from NERSC [12], the peak aggregated 1/O rate DF5-FastQuery paper [9]. The reason is that as the salgctiv
25 GB/s. But the maximum I/O rate between a single compuitecreases, more bitmaps need to be read from le and pro-

node to the le system is around 1.2 GB/s. cessed by FastBit. In addition, the results are symmettar af
_ 50% selectivity because queries are evaluated by negdiéng t
B. Query Evaluation query expression. For instance, a query‘®8” is evaluated

Our evaluations compare the performance of three differeag “NOT(A  0.8)". Thus, the selectivity of the query is
query techniques: FastQuery, HDF5-FastQuery and Scan. Saatually 20% as oppose to 80%. Lastly, we found the time also
simply reads all the data values from le and scans througkduces as the query coverage decreases. This is because the
them to answer the query. On the other hand, HDF5-FastQueiye of bitmaps associated with an array region has positive
uses index like FastQuery, but it doesn't support array ispecrelation to the number of elements in the array. Since a small
cation. As a result, given a query liker[0 : 50]< 0:5, users coverage query corresponds to a smaller array region, ziee si
rst have to submit HDF5-FastQuery the quewar < 0:5, of bitmap indexes read by FastQuery is also reduced From
then lter out the results by comparing the coordinates dhe results under various query selectivities and coverage
each selected data with the query array region. Hence, HDEhow that FastQuery scales well to the number of selected
FastQuery needs to both index and scan the data. In contrdata, and it can have signi cant performance advantages for
the query can be directly answered by the FastQuery systgaeries with smaller selectivity or coverage.
using indexes without reading data, because FastQuery supfhe query performance of HDF5-FastQuery is different
ports array speci cations. We now explain our methodologffom the results of Scan and FastQuery because it needs
for generating queries for the evaluation, and compare theth scanning and indexing. Since HDF5-FastQuery does not
performance among the three query techniques. support array speci cation, all queries must be convered t

1) Query generationThe queries used by our experimentd00% coverage queries by ignoring the array speci cation
are generated in the form of/ar[O : region] < threshold ”, from the original queries. Hence, the total query time of
where the value of region” is determined by the query HDF5-FastQuery is at least as long as the total query time
parameter “coverage”, and the value diirfeshold” is deter- of FastQuery. After getting the query results from HDF5-
mined by the query parameter “selectivity”. A 100% coverageastQuery, users still have to scan through the coordinates
guery means the array region of a query covers the whalé selected data and lIter out the data outside the array
variable dataset, and % coverage query means the arrayegion. Therefore, the time of scanning is proportionalhe t
region of a query covers% of the region of the variable number of selected data (i.e. query selectivity). As a tesul
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Fig. 7. Elapsed time for processing queries with variousc®lity and coverage settings.
2 o Large dataset 1) Performance comparisonkigure 8 shows the elapsed
2561 __ Medum dataset), time for building indexes for each of the three datasets. As
128} ] shown from the gure, the elapsed time gradually decreases

as the number of cores increases from 1 to 24. When using

a single core, the time to build index for Small, Medium

- and Large datasets, are 2,243s (37mins), 11,204s (3has) a
DDDDDDDDDDDD 1 22,535s (6hours), respectively. In comparison, with 24&spr

] we achieve a speed-up factor of 16 for all three datasets by

S | reducing their indexing time to 143s, 674s and 1350s.

%‘*Wﬂ\&m% To further explore this result, we plot Figure 9 which shows

4 8 numb];?ofcoresie 20 24 the time taken by various steps in the index building process

. . o L _ As described in Section llI-A, there are four steps for biaitd

Fig. 8. Elapsed time for building indexes with increasingmier of . . . . . .

cores/threads. indexes: a). reading data from le, b). constructing index i

) memory, c). creating a new dataset in le for storing the
the total response time of HDF5-FastQuery further grows lex, and nally d). writing index to the le. As expecteché
the selectivity increases. In fact, we found the scanningetig

elapsed time(min)

. . - apsed time for I/O and computing decreases as more cores
starts to dominate the total time after 50% selectivity, a

" Id b tall f cient t S stead e used. In particular, the aggregate I/O rate increases fr
It would be essentially more €1 cient 1o use scan instead Slnoyvig/s to 1.5GB/s which is around the peak single node

HDF5-FastQue.ry when sel_ectlwty IS over 40_%‘ ) ) I/O rate reported on this NERSC platform [12]. However, the
, 3). Summgry.Our evaluation shows that using indexing cafjaaset creation time signi cantly increases from lessitha
signi cantly improve query performance by a factor of 1.5606n4 to more than 10 seconds when multiple threads are

to over 50 depending on the selectivity of queries. We al3eq The dataset creation step involves modi cations & th
demonstrate the importance of supporting array Specrali |o metadata, and requires synchronization among threads.

for queries. Our results show that the post-processing e e efore, the increasing time is likely due to the synchro-
HDFS-FastQuery, which does not support array speci Caljon, i, aion cost from the HDFS library. We also observe that

can dominate the query response time and Fhis can potgnti:{lﬂe synchronization cost roughly stays constant regasdies
degrade the performance of query resolution to below thgtner of threads. Hence, the synchronization cost cowlel ha

of Scan. Finally, we demonstrate that FastQuery scales welbater impact on a smaller datasets. As shown in Figure, 9 (c)

with the number of selected data from query regardless @fs gata creation time is almost the same as the I/O time éor th

the data size. Therefore, as dataset sizes continue 10 gr@fa| gataset. We cannot do much about this synchronization
the performance benets from using FastQuery for query,gt 4t the FastQuery layer, we do note that efforts are

resolution will become even more signi cant. currently underway to make performance improvements for
collective metadata modi cations in HDF5 les.

2) Efciency analysis: Finally, we study the efciency

Now, we will evaluate our parallel implementation forof our parallel approach by plotting the efciency of the
building indexes. In our approach, FastQuery utilizes ipldt overall elapsed time in Figure 10. As shown from the gure,
cores on a node using multi-thread programming. In thetdee overall ef ciency decreases rapidly for 6 cores, then it
experiments, each thread runs on a single core, and asymptotically reaches 0.1. To gain a better understanafing
report parallel performance and ef ciency as the numbeesorresults, we analyzed the ef ciency with respect to both 1@ a
increases from 1 to 24. CPU. The 1/0O ef ciency corresponds to the time for reading

C. Indexing Parallelism
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Fig. 10. Overall parallel ef ciency. Fig. 11. 1/O parallel ef ciency. Fig. 12. CPU parallel ef ciency.

data and writing indexes. Since we observe similar resalts f 3) Summary:We were able to achieve substantial perfor-
both I/O operations, we plot the efciency of reading datanance speed-up by a factor of 16 when using 24 cores. The
to represent the I/O ef ciency in Figure 11. As shown frontime for building index was reduced from over several hours
the gure, /0O causes contentions among threads, becalsetalless than half hour. The aggregated 1/O rate also incdease
cores on a compute node share the same network bandwittm 200MB/s to 1.5GB/s. However, we did observe that the
to the le system. As a result, in spite of the increasin@€PU ef ciency reduces, this is most likely due the L3 cache
aggregate I/O rate previously observed in Figure 9, the IA®ing shared among cores. The I/O ef ciency also gradually
ef ciency decreases linearly from 1 to 0.3. We also obsendecreases from 1 to 0.3. Finally, the synchronization cxedh
that the ef ciency is higher for the Small dataset possiblged from creating dataset during the index building procesddcou
to smaller data size and less bandwidth contention. We plm an issue for smaller datasets. As a result, the overall
results for the CPU ef ciency which corresponds to the timef ciency decreases from 1 to 0.2. Our experiments not only
for constructing indexes in Figure 12. Although FastQuershow the performance and ef ciency of our parallel apprgach
constructs index independently across threads, surghljsime  but also identify some of the bottlenecks and issues for the
still observed the CPU ef ciency drops from 1 to 0.8. Uporiuture improvement.

further investigation, we found the drop is caused by the L3

cache being shared amongst 6 cores. We pro led and plotted

the L3 cache hit rate in Figure 12. The cache hit rate appears V. CASE STUDIES

to be strongly correlated with the CPU ef ciency. Therefore
for the overall ef ciency plot shown in Figure 10, we can
attribute the steep drop within 6 cores to the CPU ef cienc¥_,
then slower drop afterwards to the 1/O ef ciency. Finallzet
overhead of dataset creation causes the large ef ciency d
from 1 core to 2 cores, and the overall ef ciency could b
even slightly worse than the 1/0O ef ciency.

In this section, we highlight two case studies to show how
astQuery can be applied to real life scienti ¢ data analysi
,{§5k5- The rst study comes from the eld of climate modeling
e process climate simulation data stored in NetCDF les and
identify an extreme weather pattern known as an atmospheric
river. In the second study, we look at accelerator modelatg d
stored in HDF5 les and study energetic particle bunches.
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Fig. 13. A plot of the water vapor concentration with an atptasic river
reaching from Hawaii to California.

Fig. 14. Example parallel coordinate display for selectpagticles from
A. Atmospheric Rivers Laser Wake eld Particle Accelerator simulations.

An atmospheric river is a weather phenomenon where at L ke eld simulati del the behavi ¢
signi cant amount of tropical moisture in the air is transigal irggi\i:jsljal SZ?JC:ZZI Zr?d thselrgll::c?trlicc): njndn]r%a(;neti?: e(ledsat;/xlzci)r 0
far away into extratropical regions [16], an example is show . ' S .

Y P 9 [16] P ated with the plasma. Scientists at the LBNL LOASIS facility

in Figure 13. This phenomena produces unusually heayv . .
amounts of rainfall and could cause catastrophic damageatc? currently using the VORPAL program to model physical

the local communities [21], such as the western coast Ohnoﬁxperiments, 99”‘. deeper understanding of the ph_ysicaairobs
America. Therefore, it is desirable that global climate modvatlons and optimize methodology for future experiments; [8

) ) . e . 22].
simulations faithfully capture atmospheric rivers. We atése [ . : . .
the basic query operations needed to detect and charaacte{_iﬁvoRPAL simulations currently gener_ate its output in HDFS.
e sizes of the dataset are proportional to the number of

atmospheric rivers in global climate simulation output. ticl din the simulati d the di tizationhef t
The simulation data we use is produced by fvCAM, garticles used in the simulation an € discretization

version of the Community Climate Model adapted for highglectromagnetlc elds. Typical simulations with 100 mif

performance computing [27]. The particular dataset usedﬁgrt'cles cag groduce fd?tasetts of Fthetr?rder of j}od GB per
on a xed latitude-longitude mesh with quarter degree spaci Imestep, and dozens of imesteps. For this case study, &/e us

and many variables are stored in 2D arrays of 4240 720 FastQuery to accelerate a common analysis operation that is

Based on earlier work on detecting atmospheric rivers in ttﬁé |mpor':jance 0 th_e pamctle pT(yS'CI'dStS: ncIJ aIprarUcIttga’E[h
observational data [16], the key simulated quantity asdedi ave undergone signi cant wake eld acceleration, an en

with the phenomenon is the concentration of water vapor mace Ithem blackt.m tlorlne. Tr.acmg(;hes{e pt).arl'lucles t.’gc.kil: time
the atmosphere. In particular, an atmospheric river iscladlgi reveals acceleration dynamics and potentially providegins

a region with high vapor concentration outside of the trabic'nt_?_ hzwl o b_ettet_r ?emgnkexpenm_entfs.l lecti
zone. Hence, it can be identi ed by expressed a range quer 0 Nelp scientists make meaningful selections, we use a

such as “SELECT * EROM simulation data WHERE vapoP rallel coordinate display as illustrated in Figure 14teAf
concentration> threshold and 60 > latitude > 23 or the user selected particles of interest, we read the particl
60 < latitude< 23)" identi ers, extract the particles based on the identi erenfi

Since data is located in a dataset according to its Iatitufﬂaher timesteps, and then produce a trace for each particle.

and longitude position, the condition of above que6p“ >
latitude> 23 " is converted to the mesh points between 452 ) )
and 600 along the latitude and similarly 60 < latitude [N this paper, we present a design that maps array data
< 237 is converted to the mesh points between 120 arl@ 2 relational data model in order to make use of database
268. Let “vapor” denote the vapor concentration stored & tt1dexing techniques. The resulting software, named FastQu
data le. Instead of indexing “vapor” directly, our softwear IS @ general indexing and querying system for scienti ¢ data
allows us to index only the relevant port of the data, “veddition to supporting semantic queries on NetCDF and HDF5,
por[;,120:268]” and “vapor[:,452:600]", then search distan  FastQuery is able to take full advantage of the emerging many
the subarray with conditions “vapor(:,120:268]threshold” Ccore computers through threaded parallelism. We beliege Fa

VI. CONCLUSIONS

and “vapor[:,452:600] threshold”. Query is an important step towards a general infrastrudarre
) scienti ¢ data analysis by bridging the gap between theyarra
B. Laser Wake eld Particle Accelerator model used by the scienti ¢ data and relational model used

Particle acceleration using plasma laser wake elds is ey the database technology.
promising new development in the area of particle physics. Speci cally, FastQuery achieves its goal with the follogin
In contrast to conventional electromagnetic acceleratioas approaches. (a) FastQuery accelerates query performaace u
needs tens of kilometers for accelerating particles, Lasag the start-of-art indexing technology, FastBit. (b) tkasery
Wake eld accelerators can achieve the same accelerationinitegrates the array data model into its interface and allow



users to query data using a general array speci cation, agch [g]
“A[1:10] > 15". The array model interface also provide more
seamlessly connection between FastQuery and the scientic
applications. (c) Instead of enforcing data to be stored in @]
speci ¢ layout, such as in H5hut [13], FastQuery deploys a
exible yet simple variable naming scheme based on regul )
expressions to handle arbitrary le layout. (d) FastQuery
de nes a uni ed array I/O interface to interact with the arra 111
based scienti ¢ data formats. The applicability of the nfaee [12]
is demonstrated by the use of HDF5 and NetCDF in our in3]
plementation. (e) FastQuery exploits multi-core architezs

to minimize the indexing time.

Finally, the performance and the efciency of FastQuerf14]
were extensively evaluated and analyzed in our experiments
Using real scienti ¢ datasets, we showed indexing can im@roy;s
query response time by a factor of 2.5 to over a factor of 50.
We also showed the time for building indexes can be reducgé!
by a factor of 16 when 24 cores are used. We veri ed that 1/0
contention contributes to the loss in ef ciency , and thal.CP
ef ciency degrades because the L3 cache is shared am?pﬁ
cores. We made an interesting observation in that creagig n
dataset for storing indexes could cause a constant syrizhron
tion overhead. Therefore, to further improve parallel &fcy, 1
we plan to minimize the 1/0O contention and reduce three{dB]
synchronization in the future. We also plan to developing [#9]
hybrid implementation of FastQuery to deploy it on largelesca

o ) 20
distributed multi-core platforms. 1201
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